A Coupled Electromagnetic and Thermal Model for Picosecond and Nanometer Scale Plasmonic Lithography Process
نویسندگان
چکیده
Plasmonic lithography may become a mainstream nanofabrication technique in the future. Experimental results show that feature size with 22 nm resolution can be achieved by plasmonic lithography. In the experiment, a plasmonic lens (PL) is used to focus the laser energy with resolution much higher than the diffraction limit and features are created in the thermally sensitive phase-change material (PCM) layer. The energy transport mechanisms are still not fully understood in the lithography process. In order to predict the lithography resolution and explore the energy transport mechanisms involved in the process, customized electromagnetic wave (EMW) and heat transfer (HT) models were developed in COMSOL. Parametric studies on both operating parameters and material properties were performed to optimize the lithography process. The parametric studies show that the lithography process can be improved by either reducing the thickness of the phase-change material layer or using a material with smaller real refractive index for that layer. [DOI: 10.1115/1.4027589]
منابع مشابه
Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملOptimization of Fan Geometry for Urban Train Traction Motors using Coupled Numerical Electromagnetic and Thermal Analysis
One of the most important parameters in designing electrical motors is heat generation by the motor and the way it is dissipated. Temperature rising reduce efficiency and reliability of traction motors and leads to failure. In this paper, an urban train traction motor in a 3D computational fluid dynamics (CFD) simulation has been investigated. Maxwell software for electromagnetic simulation and...
متن کاملObserving Optical Plasmons on a Single Nanometer Scale
The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light-matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous poten...
متن کاملPlasmonic bowtie nanolaser arrays.
Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design for a room-temperature nanolaser based on three-dimensional (3D) Au bowtie NPs supported by an organic gain...
متن کاملTuning the optical response of a dimer nanoantenna using plasmonic nanoring loads
The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014